Learning from Demonstrations

Jur van den Berg
Kalman Filtering and Smoothing

- Dynamics and Observation model
 \[x_{t+1} = Ax_t + w_t, \quad w_t \sim N(0, Q) \]
 \[y_t = Cx_t + v_t, \quad v_t \sim N(0, R) \]

- Kalman Filter:
 - Compute \((X_t | Y_0 = y_0, \ldots, Y_t = y_t) \)
 - Real-time, given data so far

- Kalman Smoother:
 - Compute \((X_t | Y_0 = y_0, \ldots, Y_T = y_T), \quad 0 \leq t \leq T \)
 - Post-processing, given all data
EM Algorithm

\[x_{t+1} = Ax_t + w_t, \quad w_t \sim N(0, Q) \]
\[y_t = Cx_t + v_t, \quad v_t \sim N(0, R) \]

• Kalman smoother:
 – Compute distributions \(X_0, \ldots, X_t \)
 given parameters \(A, C, Q, R \), and data \(y_0, \ldots, y_t \).

• EM Algorithm:
 – Simultaneously optimize \(X_0, \ldots, X_t \) and \(A, C, Q, R \)
 given data \(y_0, \ldots, y_t \).
Learning from Demonstrations

• Application of EM-algorithm
• Example:
 – Autonomous helicopter aerobatics
 – Autonomous surgical tasks (knot-tying)
Motivation

• Learning an ideal “trajectory” of system
• Human provides demonstrations of ideal trajectory
• Human demonstrations imperfect
• Multiple demonstrations implicitly encode ideal trajectory
• **Task:** infer ideal trajectory from demonstrations
Acquiring Demonstrations

- Known system dynamics \((A, B, Q)\)
- Observations with known sensors \((C, R)\)
 - Inertial measurement unit
 - GPS
 - Cameras

\[
\begin{align*}
\mathbf{x}_{t+1} &= A\mathbf{x}_t + B\mathbf{u}_t + \mathbf{w}_t, \quad \mathbf{w}_t \sim N(0, Q) \\
\mathbf{y}_t &= C\mathbf{x}_t + \mathbf{v}_t, \quad \mathbf{v}_t \sim N(0, R)
\end{align*}
\]

- Use Kalman smoother to optimally estimate states \(\mathbf{x}\) along demonstration trajectory
Multiple Demonstrations

- D demonstration trajectories of duration T^j

 \[d^j_t = \begin{bmatrix} x^j_t \\ u^j_t \end{bmatrix}, \quad j = 1, \ldots, D \quad t = 1, \ldots, T^j \]

- Hidden ideal trajectory z of duration T^*

 \[z_t = \begin{bmatrix} x^*_t \\ u^*_t \end{bmatrix}, \quad t = 1, \ldots, T^* \]
Model of Ideal Trajectory

• Main idea: use demonstrations as noisy observations of hidden ideal trajectory

• Dynamics of hidden trajectory

\[\mathbf{z}_{t+1} = \begin{bmatrix} A & B \\ 0 & I \end{bmatrix} \cdot \mathbf{z}_t + \mathbf{w}_t^*, \quad \mathbf{w}_t^* \sim N(\mathbf{0}, \begin{bmatrix} \mathbf{Q} & 0 \\ 0 & \mathbf{N} \end{bmatrix}) \]

• Observation of hidden trajectory

\[
\begin{bmatrix}
\mathbf{d}^1_t \\
\vdots \\
\mathbf{d}^D_t
\end{bmatrix}
= \begin{bmatrix} I \\ \vdots \\ I \end{bmatrix} \cdot \mathbf{z}_t + \mathbf{s}_t, \quad \mathbf{s}_t \sim N(\mathbf{0}, \begin{bmatrix} S^1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & S^D \end{bmatrix})
\]
Inferring Ideal Trajectory

- Dynamics model: Parameter N controls smoothness; A, B, Q known
- Observation model: Parameters S encode relative quality of demonstrations

- Use EM-algorithm with Kalman smoother to simultaneously optimize \mathbf{z} and S (and N).
 - Initialize S with identity matrices
Time Warping

• But, this assumes demonstrations are of equal length and uniformly paced

• Include *Dynamic Time Warping* into EM-algorithm

• Such that demonstrations map temporally
Time Warping

- For each demonstration j, we have function $\tau^j(t)$
- Maps time t along z to time $\tau^j(t)$ along d^j
- Adapted observation model:

\[
\begin{bmatrix}
 d^1_{\tau^1(t)} \\
 \vdots \\
 d^D_{\tau^D(t)}
\end{bmatrix} = \begin{bmatrix} I \\
 \vdots \\
 I
\end{bmatrix} \cdot \mathbf{z}_t + \mathbf{s}_t, \quad \mathbf{s}_t \sim N(\mathbf{0}, \begin{bmatrix} S^1 & 0 & 0 \\
 0 & \ddots & 0 \\
 0 & 0 & S^D
\end{bmatrix})
\]
Learning Time Warping

• $\tau^j(t)$ is (initially) unknown

• Assume (initially):
 - $T^* = (T^1 + ... + T^D) / D$
 - $\tau^j(t) = (T^j / T^*) t$

• Adapted EM-algorithm:
 - Run Kalman smoother with current S and τ
 - Optimize S by maximizing likelihood
 - Optimize τ by maximizing likelihood
 (Dynamic Time Warping)
Dynamic Time Warping

- Match demonstration j with z
- Assume that demonstration moves locally
 - twice as slow as z
 - same pace as z
 - twice as fast as z
- Dynamic Programming to find optimal “path”
- Cost function: likelihood of
 \[d_j^{\tau^j(t)} = z_t + s_t, \quad s_t \sim N(0, S^j) \]
Example: Helicopter Airshow

- Thesis work of Pieter Abbeel
- Unaligned demonstrations:
 - Movie
- Time-aligned demonstrations:
 - Movie
- Execution of learnt trajectory
 - Movie
Example Surgical Knot-tie

• ICRA 2010 Best Medical Robotics Paper Award
• Video of knot-tie
Conclusion

• Learning from demonstrations
• Includes Dynamic Time Warping into EM-algorithm