
Efficient Path Planning in Changing Environments

Dennis Nieuwenhuisen Jur van den Berg Mark Overmars

Abstract— This paper addresses the problem of path plan-
ning in environments in which some of the obstacles can change
their positions. It uses the popular PRM method for navigating
a robot through an environment. One of the key features
of PRM is that it moves the major part of the calculations
involved in the path planning process to the preprocessing
phase. After that, paths can be extracted very quickly (in a
query phase) usually without any noticeable delay. While very
successful in many applications, doing most of the work in a
preprocessing phase restricts the environment to be static i.e.
obstacles are not allowed to change their configurations after
the preprocessing phase. In this paper we describe and evaluate
an algorithm based on PRM that does allow obstacles to change
their configuration after preprocessing while still allowing for
a quick query phase.

I. INTRODUCTION
The Probabilistic Roadmap Method (PRM) [9] has become

one of the leading path planning techniques in the field of
robotics, both in virtual and real-world contexts. Recently
its applications have extended to the domain of computer-
assisted training, advanced gaming [12], [8] and biology (see
e.g. [13]). Its main features are its simplicity, allowing for
almost instantaneous queries, extensibility to higher dimen-
sions and the broad range of problem types to which it is
applicable. The PRM method works by sampling collision-
free configurations and by connecting these by collision-
free local paths (created by a local planner). A graph
(the roadmap) is thus formed that aims at representing the
connectedness of the free space. If the roadmap adequately
represents this connectedness, a path between two collision-
free configurations can be computed efficiently. An important
property of the PRM planner is that the major part of the
computations are done in a preprocessing phase. After this
preprocessing phase, paths can be extracted quickly in a
query phase allowing for interactive performance.

The PRM methods assumes the environment to be static.
That is, between the creation of the roadmap and the query
phase, the environment is not allowed to change since this
could violate the premise that the roadmap represents the
free space. However, realistic environments are often not
static, but contain obstacles that change their positions over
time. A straightforward solution to this problem is to update
the roadmap after an obstacle has changed its position.

Part of this research has been supported by the Dutch BSIK/BRICKS
project and by the GATE project, funded by the Netherlands Organization
for Scientific Research (NWO) and the Netherlands ICT research and
Innovation Authority (ICT Regie).

Dennis Nieuwenhuisen and Mark Overmars are with the Institute of
Information and Computing Sciences, Utrecht University, The Netherlands
(e-mail: {dennis, markov}@cs.uu.nl).

Jur van den Berg is with the Department of Computer Science, University
of North Carolina at Chapel Hill, USA (e-mail: berg@cs.unc.edu).

Unfortunately such updates are usually computationally
expensive because they involve collision checks. This
detracts from the important property of the fast query
phase. In this paper we propose an algorithm that makes
the roadmap robust against changes in positions of some of
the obstacles while still providing for a fast query phase.
We call such environments changing environments. Besides
stationary obstacles, changing environments contain moving
obstacles that can have a different position for each query.

Path planning in changing environments is a relatively
unaddressed problem. In [11] a voxel grid is used that covers
the workspace and stores for each roadmap edge which
voxels are intersected by the robot during the path associated
with that edge. When an obstacle changes position, the
voxels are used to identify the edges that are invalidated by
the obstacle. This is done by checking the voxels covered
by the obstacle for overlap with the swept voxels of each of
the edges. Using only the edges of the roadmap that are not
invalidated, a path can quickly be found.

A more ad-hoc approach is used in [7]. This planner
first constructs a cycle-free roadmap for the static part of
the environment. If, in a query, an edge crucial for finding
a path intersects with a moving obstacle, a variant of the
Rapidly-exploring Random Trees (RRT) approach [10] is
used to reconnect the vertices of this edge. If this procedure
fails, an attempt is made to reconnect the two disconnected
components of the roadmap by additional global sampling.

The above methods aim at solving the problem in the
query phase rather than in the preprocessing phase. We
present an algorithm that creates a robust roadmap in the
preprocessing phase by using the observation that the motion
of the moving obstacles is often not unconstrained, but is
restricted to some confined area. Examples of such obstacles
are a door that can be open or closed or a chair whose
position is bounded to a room. In a previous paper [1]
we presented an algorithm that exploits this property by
assuming that a moving obstacle has a predefined set of po-
tential placements. While a straightforward implementation
of this algorithm leads to roadmaps that are robust against
placement changes of these moving obstacles, the algorithm
suffers from some drawbacks.

In this paper we will first briefly describe the algorithm
and identify its problems. We will conclude that the main
problem is that the performance of the algorithm decreases
quickly if the number of moving obstacles increases. Next
we will pinpoint the cause of this problem and then state
a solution for it based on Boolean logic. We will also
present some heuristics to further improve the performance

Proceedings of the 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems
San Diego, CA, USA, Oct 29 - Nov 2, 2007

ThB5.1

1-4244-0912-8/07/$25.00 ©2007 IEEE. 3295

of the algorithm. Finally we report experiments that show
the effectiveness of our approach.

II. ROBUST ROADMAPS

The path planning problem is defined as finding a path
for a robot R from one configuration to another while
avoiding obstacles. Often these obstacles are assumed to be
stationary, e.g. walls. The PRM method creates a roadmap
G that represents the free space such that paths can be
extracted quickly. A consequence of this approach is that
the environment is not allowed to change between the
moment the roadmap is created and the moment of the
query. However, in realistic environments often obstacles
are not stationary but can change their position between
the moment the roadmap is created and the moment a
path is extracted. For example someone can close a door
or move a chair. In our algorithm we use the fact that in
many applications the environment contains information
about which changes in the placements of the obstacles are
possible. For example, we usually know where the doors
are that can be opened, and in which states they can be
(anywhere between open and closed). We also know that
a chair is located “somewhere” in a room. We refer to
obstacles for which the set of potential placements is known
a priori as moving obstacles. These include obstacles that
can be removed from (and re-added to) an environment.
So, besides stationary obstacles, a changing environment
contains k moving obstacles M1,M2, . . . ,Mk.

In the remainder of this section, we will briefly restate
the algorithm described in [1]. For each moving obstacle
Mi a set of potential placements P (Mi) is defined. Each set
P (Mi) is partitioned into a finite set of chunks ∆(Mi) =
{δ1

i , δ2
i , . . .}. A chunk δ ∈ ∆(Mi) is a subset of the

placements of obstacle Mi : δ ⊂ P (Mi). The definition
of ∆(Mi) as a partition of P (M) implies the following:⋃

∆(Mi) = P (Mi) and δp
i ∩ δq

i = ∅ when p 6= q. The set of
all combinations of the positions of the moving obstacles is
D = ∆(M1)×∆(M2)×· · ·×∆(Mk). An element d of D, is
denoted by d = (δq1

1 , δq2
2 , . . . , δqk

k), where the q’s are indices
of individual obstacle chunks. Such a composite chunk d
simply states for each moving obstacle in which chunk it is
present. We will now describe the algorithm to create robust
roadmaps, roughly following the PRM algorithm. For this we
need some definitions (taken from [1]).

Definition II.1 (Collision-free). For a configuration c of the
robot and a composite chunk d ∈ D, we define the function
CF (c, d) to be true iff c neither collides with the stationary
obstacles nor with any of the chunks in d. Analogously, for
two configurations c and c′, the function CF (c, c′, d) is true
iff the path generated by the local planner between c and c′

neither collides with the stationary obstacles nor with any
of the chunks of d.

To create the roadmap G, a random configuration c
in C-space is generated and added to G as a vertex if
∃d∈D | CF (c, d). Next, connections (edges) between the

vertices need to be added. For this the notion of roadmap
path existence is defined.

Definition II.2 (Path existence). For two vertices ci and cj

in G and a composite chunk d ∈ D, we define the function
PE(ci, cj , G, d) to be true iff a (collision-free) path exists in
G connecting ci and cj if the obstacles are placed according
to composite chunk d.

Only symmetric motions are allowed, thus
PE(ci, cj , G, d) = PE(cj , ci, G, d). In changing
environments, cycles in the roadmap G are important
in providing alternative routes if a path is blocked by a
moving obstacle. Adding every potential edge to G (thus
creating many cycles) results in many alternative routes but
is computationally expensive and makes G unnecessary large
which influences the speed of the query phase. Therefore in
[1] the notion of labeled components is introduced. Labeled
components consist of groups of vertices that are collision
free for the same subset of D and are also connected for
that same subset.

Definition II.3 (Labeled component). Two vertices ci, cj ∈
G belong to the same labeled component L iff

{d ∈ D | CF (ci, d)} = {d ∈ D | CF (cj , d)}
= {d ∈ D | PE(ci, cj , G, d)}.

Note that vertices that belong to a different labeled com-
ponent can still be connected by a path in G. Between each
pair of labeled components the subset of D for which a path
exists is maintained. Such a set is called a connection set.
An example is shown in Fig. 1.

Definition II.4 (Connection set). For each pair of la-
beled components Li and Lj in G, a connection set
CS(Li, Lj , G) ⊂ D is defined as the set of composite chunks
for which a path exists between Li and Lj:

CS(Li, Lj , G) = {d ∈ D | ∃ci∈Li,cj∈Lj
PE(ci, cj , G, d)}.

The information contained in the connection sets is used to
decide when to add an edge to the roadmap G. Only if such
an edge connects two different labeled components and if the
connection set between those labeled components is extended
the edge is added. Such an edge is called a necessary edge.

Definition II.5 (Necessary edge). For two vertices ci ∈ Li

and cj ∈ Lj , we define the edge (ci, cj) to be necessary if it
extends the connection set between the two labeled compo-
nents in G, i.e. {d ∈ D | CF (ci, cj , d)} 6⊂ CS(Li, Lj , G).

If a new vertex c has been added to G, a set of neighbor
vertices Nc in G is selected. If the edge between c and c′ ∈
Nc is necessary, it is added to G. The generation of random
configurations and the addition of necessary edges continues
until a predefined stop criterion has been met.

Two more ingredients are needed to create robust
roadmaps. If a connection set is extended because a nec-
essary edge is added, it is updated. This update may affect
other connection sets as well because new routes through

3296

(a)

CS(L1, L2)
δ3
2 x · ·

δ2
2 x · ·

δ1
2 x · ·

δ1
1 δ2

1 δ3
1

CS(L1, L3)
δ3
2 x · ·

δ2
2 x · ·

δ1
2 · · ·

δ1
1 δ2

1 δ3
1

CS(L2, L3)
δ3
2 x x x

δ2
2 x x x

δ1
2 · · ·

δ1
1 δ2

1 δ3
1

(b)

Fig. 1: Connection sets. (a) An environment with two moving
obstacles (the two doors). The placements of both doors are
partitioned in three chunks. (b) The corresponding connection sets.
The connection sets show for all combinations of chunks whether
there is a connection or not between the labeled components. An
“x” means there is a connection, a dot means there is no connection.

the roadmap may have become available. Therefore the
new information needs to be propagated to update all other
connection sets. An example of propagation is shown in Fig.
2. Also after an update, a connection set may contain every
element of D (i.e. a path exists between the two associated
labeled components regardless of the placements of the
moving obstacles). Because of definition II.3 the two labeled
components need to be merged and the connection set can
be deleted. In [1] it is shown that the procedure described in
this section to create roadmaps is probabilistically complete,
i.e. if the algorithm is run for a sufficient amount of time,
the roadmap is guaranteed to contain a solution for every
feasible query.

The roadmap can now be used to extract paths in the query
phase. Given the chunks the moving obstacles are in, a path
can be quickly generated. If during the execution of the path
a moving obstacle changes position, we immediately know
if one or more of the edges of the path are invalidated. In
that case a new path is created by querying from the current
position of the robot to the goal without any additional
collision checks.

(a) Three labeled components are
present.

(b) Adding the dotted edge to G
not only extends CS(L2, L3, G)
but also CS(L1, L3, G).

Fig. 2: Propagation, the environment consists of two rooms and a
hallway separated by doors.

III. DRAWBACKS OF THE ALGORITHM

Although successful in creating robust roadmaps, the
algorithm of the previous section has some drawbacks. Since
a connection set represents all combinations of chunks for
which a path exists in G, the size of the connection sets and
thus the amount of time spent on the operations manipulating
the connection sets increases exponentially with the number
of obstacles and chunks. Suppose that the set of placements
P (Mi) of Mi is partitioned in mi chunks, then the total
number of elements in each connection set equals

∏k
i=1 mi

where k is the total number of moving obstacles. Stated
differently, there is an exponential dependency between the
number of chunks and the size of the connection sets.
For example, if an environment consists of 10 obstacles,
each consisting of 4 chunks, a connection set consists of
410 = 1, 048, 576 elements. If between every pair of labeled
components a connection set is defined, the number of
connection sets maintained is equal to the square of the
number of labeled components. Note that this number should
be divided by 2 since undirected roadmaps are used. Thus if
the number of moving obstacles in the algorithm presented in
[1] increases, the algorithm quickly becomes computationally
infeasible.

A second problem occurring with the propagation al-
gorithm is that if a connection set between two labeled
components Li and Lj is extended, this can potentially affect
all other connection sets. Consider the following example
shown in Fig. 3: the roadmap G consists of n labeled
components (L1, L2, ..., Ln). If the labeled components form
a closed chain, i.e. labeled component Li is only neighboring
Li−1 and Li+1 if 1 < i < n and L1 is neighboring Ln, then
if a necessary edge is added between Li and Li+1, this could
potentially affect all other n2 connection sets. In this case
the propagation algorithm is relatively expensive. In Fig. 3 it
may be necessary to propagate to n2 = 82 connection sets.

(a) A closed chain of
labeled components each
neighboring only two other
labeled components.

(b) The connection
set CS(L3, L4, G) is
extended.

Fig. 3: An example in which propagation is expensive.

For many pairs of labeled components (especially those
close together) there is only a limited number of moving
obstacle placements for which no path exists. The connection
sets however store for which combination of placements of
the obstacles a path does exist. The result is that connection
sets are exponentially large while only for a small number
of obstacle placement combinations no path might exist.
Because we need to perform many operations on these
connection sets (check completeness, merge) the running

3297

time of the algorithm is for a large part related to these
operations.

IV. IMPROVING THE ALGORITHM
Before we propose solutions to the observations of the

previous section we translate our problem to the domain of
Boolean logic [3]. For this, we use the variables of the chunks
as literals (a literal is an atomic formula or its negation in
Boolean logic). For example, δ2

i means that obstacle Mi is
positioned inside chunk δ2

i . The negation of a chunk, e.g. δ3
i ,

means that obstacle Mi is not positioned within that chunk.
The combination of chunks for which a path is obstructed
can now be described using an obstruction function.

Definition IV.1 (Obstruction function). Given two config-
urations ci, cj ∈ G, an obstruction function O(ci, cj) is
a Boolean function that states for which combinations of
literals (chunks) the path created by the local planner
between ci and cj is obstructed. If the values for the
literals are known (and thus the positions of the moving
obstacles), it evaluates to TRUE if the path is obstructed, else
it evaluates to FALSE. For two labeled components Li and
Lj , the obstruction function O(Li, Lj , G) states for which
combinations of literals no path exist in G between the two
labeled components.

Suppose the local planner reports intersections on the path
between configurations ci and cj in Fig. 4 with the following
chunks: δ3

1 , δ1
2 and δ2

2 , then the obstruction function for the
corresponding edge is: O(ci, cj) = (δ3

1 ∨ δ1
2 ∨ δ2

2). Given
the actual placements of the moving obstacles, we know
which literals are TRUE and which ones are FALSE. If an
obstruction function of an edge evaluates to TRUE then the
edge collides for the given placements of the obstacles. Note
that the obstruction function of a single edge always consists
of only one clause in disjunctive normal form.

Fig. 4: An example of an edge (ci, cj) intersecting multiple chunks.
The corresponding obstruction function is (δ3

1 ∨ δ1
2 ∨ δ2

2).

Using the literals we can also describe the connection
sets that state for which composite chunks a path exists
between two labeled components. However, considering that
between two labeled components there is often only a limited
amount of chunks that can block the path between them,
we will switch from maintaining connections to maintaining
obstructions. Obstructions between labeled components will
be maintained in obstruction functions. For each pair of
labeled components Li and Lj , an obstruction function
O(Li, Lj , G) is defined.

Suppose we have two labeled components Li and Lj . The
corresponding obstruction function O(Li, Lj , G) is initial-
ized with TRUE. This signifies that no path exists for any

combination of the literals between Li and Lj . If an edge is
added between ci ∈ Li and cj ∈ Lj then the corresponding
obstruction function is extended by taking the conjunction of
the obstruction function of the edge and the current obstruc-
tion function between the labeled components: O(Li, Lj , G)
becomes O(Li, Lj , G)∧O(ci, cj). It is also possible that no
direct edge is added between two labeled components but
connectivity is extended via other labeled components using
propagation (see IV-A for more details). Such an example is
shown in Fig. 5. Here an obstruction function O(L1, L3, G)
exists for labeled components L1 and L3. Next, an edge
between L2 and L3 is added to G. Since a path through
G is now possible from L1 to L3 via L2, the obstruction
function O(L1, L3, G) is extended.

Given the values of the literals (e.g. the actual chunks
in which the obstacles are) at query time, an obstruction
function can be evaluated to check if a path exists between
two labeled components for a given set of placements of the
obstacles. If it evaluates to FALSE, a connection between the
labeled components exists.

Fig. 5: A more complex obstruc-
tion function. Before the dotted
edge is added to the roadmap,
O(L1, L3, G) = (δ2

1 ∨ δ3
1). Af-

ter the addition O(L1, L3, G) =
(δ2

1 ∨ δ3
1) ∧ (δ1

3 ∨ δ2
3 ∨ δ3

2).

Fig. 6: An environment
consisting of two mov-
ing obstacles: a door (3
chunks) and a chair (4
chunks).

A. Implementing the Operations

We will now describe how the different operations of [1]
can be implemented using obstruction functions. To check if
the edge between vertices ci ∈ Li and cj ∈ Lj is necessary,
we need to verify that the conjunction of O(ci, cj) and the
current obstruction function O(Li, Lj , G) yields more valid
paths between the labeled components than the current ob-
struction function O(Li, Lj , G). This is the case if O(ci, cj)
evaluates to FALSE (i.e. a path exists) for certain combina-
tions of literals while O(Li, Lj , G) evaluates to TRUE. Stated
differently the new edge is necessary if O(Li, Lj , G) is not
an implication of O(ci, cj). To check for a subset relation
we create the function (O(Li, Lj , G) ∨ O(ci, cj)). If this is
a tautology (i.e. true for every combination of literals), then
the edge is not necessary. Checking whether such a function
is a tautology can be an expensive process because of the
large number of combinations of literals.

To speed up the evaluation of the obstruction functions, we
will transform them to a satisfiability test. Such a test checks
whether a combination of literals exists that makes a function
TRUE. If this is not possible the test outputs unsatisfiable.
Testing whether a function is a tautology is equivalent to

3298

testing if its negation is unsatisfiable. Now we can restate
the definition of a necessary edge:

Definition IV.2 (Necessary). For two vertices ci ∈ Li and
cj ∈ Lj and obstruction function O(Li, Lj , G), we define
the edge (ci, cj) having obstruction function O(ci, cj) to be
necessary if the following function is unsatisfiable:

(O(Li, Lj , G) ∨O(ci, cj))

which simplifies to

(O(Li, Lj , G) ∧O(ci, cj)).

The satisfiability problem is well-known in Boolean
logic and is NP-complete [4], [6]. Fortunately many high
performance heuristics have been developed, see e.g. the
proceedings of the International conference on Theory and
Applications of Satisfiability Testing [2].

Recall that after updating a connection set the new in-
formation was propagated to the other connection sets by
recursively updating all neighboring labeled components.
Because we now use obstruction functions, the propagation
algorithm needs to be adapted and the new necessary edge
test has to be used. It is shown as Alg. IV.1. In the initial call,
On is the obstruction function of the newly added necessary
edge.

Algorithm IV.1 PROPAGATE (Li, Lj , G,On)
1: O(Li, Lj , G)← O(Li, Lj , G) ∧On

2: for all neighbors Lk of Li do
3: On ← O(Li, Lj , G) ∨O(Li, Lk, G)
4: if (O(Lj , Lk, G) ∧On) is unsatisfiable then
5: PROPAGATE (Lj , Lk, On)
6: for all neighbors Lk of Lj do
7: On ← O(Li, Lj , G) ∨O(Lj , Lk, G)
8: if (O(Li, Lk, G) ∧On) is unsatisfiable then
9: PROPAGATE (Li, Lk, On)

After propagation, labeled components that are connected
for every combination of chunks need to be merged. In prin-
ciple the procedure as described in [1] can be used. There,
two labeled components were merged if their connection set
was complete. Because here we use obstruction functions,
we need to redefine completeness.

Definition IV.3 (Complete). The obstruction function
O(Li, Lj , G) is complete iff for every combination of place-
ments of the obstacles O(Li, Lj , G) = FALSE.

Stated differently, to check if an obstruction function is
complete we need to check whether it is unsatisfiable.

B. Preliminary Functions

Since multiple chunks are associated with one obstacle,
the associated literals are not independent. Besides the in-
formation that is contained within the obstruction functions,
there is also a list of assumptions that we can add to those
functions. Given moving obstacle Mi, partitioned in mi

chunks ∆(Mi) = {δ1
i , δ2

i , . . . , δmi
i }, we know the following

two facts:
1) Moving obstacle Mi will be present in one of the

chunks, thus
∨mi

p=1 δp
i = TRUE.

2) An obstacle will never be in two chunks at the same
time. Therefore δp

i ∧ δq
i = TRUE for all p 6= q.

The above two rules apply to all k moving obstacles
M1,M2, . . . ,Mk. The preliminary functions are always
added as assumptions when a function is tested for satisfiabil-
ity. For example in the environment shown in Fig. 6 we know
the following 11 functions to be true: δ1

1∨δ2
1∨δ3

1∨δ4
1 , δ1

1 ∧ δ2
1 ,

δ1
1 ∧ δ3

1 , δ1
1 ∧ δ4

1 , δ2
1 ∧ δ3

1 , δ2
1 ∧ δ4

1 , δ3
1 ∧ δ4

1 , δ1
2 ∨ δ2

2 ∨ δ3
2 ,

δ1
2 ∧ δ2

2 , δ1
2 ∧ δ3

2 and δ2
2 ∧ δ3

2 .

C. Limiting the Number of Obstruction Functions

The number of obstruction functions (and in the original
algorithm the number of connection sets) is an important
factor in the running time of our algorithm. The more data
is propagated throughout the roadmap, the more obstruction
functions will be created. Because of the Boolean operations
during propagation, the obstruction functions also get more
complex. However, the larger the propagation depth, the
further two labeled components are apart in terms of graph
distance. If no information is propagated, our algorithm
behaves the same as standard PRM. The first level of prop-
agation is between neighboring labeled components. The
next level is between labeled components that are connected
via a third labeled component etc. To guarantee that no
unnecessary edge is added, propagation needs to continue as
long as obstruction functions are extended (see Alg. IV.1).

Our ultimate goal is to create roadmaps that represent
the connectivity of the environment without getting too
dense to provide for a fast query phase. We have conducted
experiments to investigate the relation between the maximum
propagation depth and the density of the roadmap. The
algorithm was run until a certain number of vertices were
added to the roadmap. With this number fixed, the number
of edges in the roadmap is a good measure of its density. We
compared the maximum propagation depth with the number
of edges in G. The environment consists of 10 obstacles
whose placement sets were all represented by 4 chunks. The
results of this experiment are shown in Table IV-C.

Prop. depth Time (s) Nr. edges Nr. obstruction func.

0 6.6 4529 0
1 9.6 867 352
2 17.3 676 706
3 51.2 652 1525
4 133.1 652 1458

TABLE I: Relation between propagation depth and number of
edges.

As can be seen from the results, the number of edges
decreases quickly when the maximum propagation depth is
increased. If the propagation depth gets too large however,
the number of edges hardly decreases anymore while the
running time increases dramatically. This can be easily ex-
plained by realizing that an obstruction function between two

3299

labeled components is only used when a direct edge between
those labeled components is tested for usefulness. The further
labeled components are apart, the smaller the probability this
will happen. Therefore we can limit the propagation depth
such that only a very small number of useless edges is added
to the roadmap while the running time decreases drastically.
We establish the maximum propagation depth automatically.
In standard PRM connections are usually only tried to vertices
within a certain distance, the maximum neighbor distance.
We use this distance to establish the maximum propagation
depth. If two labeled components are further apart than
the maximum neighbor distance then propagation stops.
The distance between two neighboring labeled components
can easily be defined as the distance between their center
points where a center point is defined as the point with
coordinates that are the average of all configurations in the
labeled component. If the two labeled components are not
neighboring we use the cumulative distance.

Early in the execution of our algorithm there are many
different labeled components consisting of only one or a
few vertices. In a later stage, as the number of edges in
the roadmap increases, many of these will be merged into
larger labeled components. To speed up this process we start
the roadmap creation process by seeding. By seeding we
mean using standard PRM in the free space only (i.e. not
colliding with the stationary obstacles nor any of the chunks).
This creates labeled components between the chunks of the
moving obstacles that can later act as bridges between the
other labeled components. The number of vertices that are
added in the seeding process is determined automatically.
Ideally it should be related to the difficulty of the problem. If
a problem consists of many chunks it is considered difficult.
Using information gathered during the seeding process we
can estimate this difficulty. In the seeding process an edge
is rejected if it intersects with a chunk. We keep track of
the ratio between accepted and rejected edges and use that
to determine the number of vertices used for seeding. (Note
that, to determine this ratio, we ignore edges that are rejected
because they collide with one of the stationary obstacles.)
Using the maximum number of vertices that we use as a
stop-criterion for the algorithm, the ratio is used to decide
how many vertices are added in the seeding phase.

V. EXPERIMENTS

Our algorithm has been implemented in C++ and experi-
ments have been conducted on a Pentium IV 2.4GHz having
1GB of memory. To check the satisfiability of the Boolean
functions we used MiniSat [5]. This is a very efficient SAT
solver that is publicly available. We have performed a few
different experiments. We compared the algorithm of this pa-
per with a standard implementation of PRM (standard PRM)
and with the algorithm as described in [1] (straightforward
method). To provide for a fast query phase, we need to know
which edges of the roadmap collide with which (placements
of) the moving obstacles. This information is inherently
available in our algorithm and for a fair comparison it should
also be available to the standard PRM. Therefore, during

preprocessing we collision check the vertices and edges of
the standard PRM algorithm both with the stationary obstacles
and the chunks. The potential collisions with one or more
chunks are stored within the roadmap such that at query time
this information is readily available. To gain insight in the
performance gain of seeding we did all experiments both
with and without seeding.

Fig. 7: The Double Puzzle scene. Every “door” can be positioned
in two chunks.

For the experiments we used three environments: Puzzle,
double puzzle and office. Double puzzle is shown as Fig. 7
and has 8 moving obstacles. For puzzle we simply used half
of this environment. The office environment (shown in Fig.
8) represents 5 different rooms around a central staircase.
The two top and two bottom rooms can be reached using
ordinary doors all represented by 3 chunks. Also between the
rooms are doors. Inside the rooms are desks and chairs that
can be positioned in 4 different chunks. The left room can be
reached by means of a sliding door. Inside this room there are
two boxes that can both be placed in 4 different chunks. In
total this environment consists of about 12 million different
combinations of chunks. Because of the high number of
chunks, the office scene was computationally infeasible for
the straightforward method.

All experiments ran until a predetermined number of
vertices were added to the roadmap. In this way it is
easy to compare our algorithm to standard PRM. Also all
other parameters were kept constant to provide for a fair
comparison; they are shown in Table II. Besides the running
time we also report the number of edges in the roadmap
since this number relates closely to the query time (since the
number of vertices is the same in all algorithms).

MaxNrVert MaxNeighbDist MaxNrNeighb

Puzzle 200 26% 10
Double puzzle 400 49% 10
Office 800 15% 10

TABLE II: Parameter settings. The maximum neighbor distance is
a percentage of the diameter of the environment.

Every experiment was repeated 50 times and the results
were averaged. They are shown in Table III. As can be seen
from the results, in the simple environments our algorithm
outperforms standard PRM in terms of time. This can be
mainly attributed to the low number of chunks and therefore
the relative high cost of collision checking as compared to the
time spend in manipulating obstruction functions. Because
standard PRM does not have the advantage of labeled compo-
nents, it is not able to save collision checks and therefore its
running time is higher. In the simple puzzle environment the

3300

overhead of the satisfiability tests is relatively high. Therefore
the straightforward method outperforms the Boolean logic
method by a small factor. If the number of chunks gets larger,
the method using Boolean logic is faster. This is already the
case in the double puzzle environment that has 16 chunks.
In the office environment, which is much more complex,
the running times of standard PRM and Boolean logic are
comparable. In all cases the complexity of the roadmaps
was much lower in our algorithm as can be seen from the
number of edges resulting in a better query time. Fig. 8 shows
examples of the roadmaps generated by standard PRM and
our method. The connectivity of the roadmaps is comparable
but since in the second roadmap only useful edges were
allowed, the roadmap is much sparser. As can be seen from
all experiments, seeding helps by lowering the running time
while keeping the number of edges equal.

Puzzle Double puzzle Office
t(s) n t(s) n t(s) n

Standard PRM 2.03 1652 7.61 3130 5.74 6368
Straightforward 0.54 207 4.03 430
Boolean logic 0.79 207 2.42 410 5.20 902

w/o seeding 1.22 218 3.52 424 9.32 981

TABLE III: Results averaged over 50 runs. t(s) is running time in
seconds, n is number of edges.

(a) Standard PRM. (b) Our algorithm.

Fig. 8: Example roadmaps in the office environment. Chunks are
shown in slightly different shades.

VI. CONCLUDING REMARKS

In this paper we have improved the basic algorithm
presented in [1] for motion planning in changing environ-
ments. We first pinpointed its bottlenecks and then suggested
improvements. A first problem was the memory consuming
connection sets that kept path existence information for every
combination of chunks. If the environments become more
complex the memory consumption becomes too high for
this approach. Therefore we have switched from maintaining
full connection information to maintaining only collision
information. While this makes no difference from a theo-
retical perspective, in practice it turns out to be a major
gain. Secondly, the operations concerning the connection sets
were rather brute force. To speed up these operations, we
translated the problem to the domain of Boolean logic. While

the problem of checking the completeness of an obstruction
function still remains difficult, within this domain many very
fast heuristics have been created. To determine if two labeled
components can be merged, we need to check whether the
related obstruction function is complete. This problem was
translated to a satisfiability test that could be performed quite
efficiently in practice.

We have also presented two heuristics. The first heuristic
limits the propagation depth. Because of this limitation,
information in the obstruction functions is not complete
anymore and thus unnecessary edges may be added to the
roadmap. In our experiments we showed that the number of
unnecessary edges was very low while the gain in perfor-
mance was huge. We also described a method to automat-
ically determine the propagation depth without introducing
additional parameters. The second heuristic speeds up the
roadmap creation process by first adding some vertices in the
free space. This heuristic prevents that in the early phases
of the algorithm many small labeled components are created
that later need to be merged.

We conducted experiments that showed that our algorithm
performs efficiently in realistic environments. Compared to
standard PRM, it creates much sparser roadmaps (while
maintaining the same connectivity) that provide for fast
queries and re-planning.

REFERENCES

[1] J. P. van den Berg, D. Nieuwenhuisen, L. Jaillet, and M. H. Overmars.
Creating robust roadmaps for motion planning in changing environ-
ments. In IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 2415–2421, 2005.

[2] A. Biere and C.P. Gomes, editors. Theory and Applications of
Satisfiability Testing - SAT 2006, 9th International Conference, Seattle,
WA, USA, August 12-15, 2006, Proceedings, volume 4121 of Lecture
Notes in Computer Science. Springer, 2006.

[3] G. Boole. The calculus of logic. Cambridge and Dublin Mathematical
Journal, III (1848):183–198, 1848.

[4] S. Cook. The complexity of theorem proving procedures. In ACM
Symposium on Theory of Computing, pages 151–158, 1971.

[5] N. Eén and N. Sörensson. Minisat 1.14, 2005.
[6] M.R. Garey and D.S. Johnson. Computers and Intractability; A Guide

to the Theory of NP-Completeness. W.H. Freeman & Co., 1979.
[7] L. Jaillet and T. Siméon. A prm-based motion planner for dynamically

changing environments. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 1606–1611, 2004.

[8] A. Kamphuis and M.H. Overmars. Finding paths for coherent groups
using clearance. In IEEE International Conference on Robotics and
Automation, pages 3815–3822, 2004.

[9] L.E. Kavraki, P. Švestka, J.-C. Latombe, and M.H. Overmars. Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces. IEEE Transactions on Robotics and Automation, 12:566–580,
1996.

[10] S.M. LaValle and J.J. Kuffner. Rapidly-exploring random trees:
Progress and prospects. B. R. Donald, K. M. Lynch, and D. Rus,
editors, Algorithmic and Computational Robotics: New Directions,
pages 293–308, 2001.

[11] P. Leven and S. Hutchinson. A framework for real-time path planning
in changing environments. International Journal of Robotics Research,
21(12):999–1030, 2002.

[12] D. Nieuwenhuisen, A. Kamphuis, M. Mooijekind, and M.H. Overmars.
Automatic construction of roadmaps for path planning in games. In
International Conference on Computer Games: Artificial Intelligence,
Design and Education, pages 285–292, 2004.

[13] G. Song and N.M. Amato. Using motion planning to study protein
folding pathways. Journal of Computational Biology, 9(2):149–168,
2001.

3301

