
Using workspace information as a guide to
non-uniform sampling in probabilistic roadmap

planners
Jur P. van den Berg Mark H. Overmars

Institute of Information and Computing Sciences
Utrecht University, The Netherlands

Email: {berg, markov}@cs.uu.nl

Abstract— The probabilistic roadmap (PRM) planner is a
popular method for robot motion planning problems with many
degrees of freedom. However, it has been shown that the method
performs less well in situations where the robot has to pass
through a narrow passage in the scene. This is mainly due to the
uniformity of the sampling used in the planner; it places many
samples in large open regions and too few in tight passages.
In this paper, a technique based on a robot independent cell
decomposition of the free workspace is proposed to guide the
probabilistic sampling, such that the distribution of samples tends
more toward the interesting regions in the scene. It is shown
that this leads to improved performance on difficult planning
problems in 2D and 3D workspaces.

I. INTRODUCTION

Motion planning is of great importance in various fields,
such as robotics, virtual environments, maintenance planning,
and computer-aided design. Although a number of exact and
complete methods have been proposed for the robot motion
planning problem (see [16] for an overview), these are sel-
domly used because they are only applicable to the simplest
instances of the planning problem. For more complicated
problems, where the robot has many degrees of freedom,
these methods are computationally infeasible. Therefore, the
focus has shifted toward probabilistic and heuristic methods,
sacrificing completeness for speed and applicability.

A technique often used nowadays is the Probabilistic
Roadmap (PRM) planner [2], [3], [12], [14], [17], [18]. The
idea behind it is that a roadmap is created that represents
the connectivity of the free part of the configuration space.
The nodes of the graph are randomly sampled collision-free
configurations that are connected by a simple and fast local
planner (typically a straight-line motion in configuration space
is used). The method is capable of solving motion planning
queries in complex environments, and has been used in many
practical situations.

However, the method has trouble in finding paths through
narrow passages in the scene. This is mainly due to the
uniformity of the sampling; it places many samples in open
regions and too few in tight passages (a thorough analysis
is given in [11]). This problem has received much attention
of researchers in the field. The earliest strategies trying to
tackle this problem use information from the roadmap adap-
tively during construction. They add additional nodes in the

Fig. 1. A cell decomposition of the workspace of a 2D example scene. The
grey cells form the watersheds.

neighborhood of nodes that were only connected to a few
neighbors [13], [15]. Later methods involve sampling more
densely near obstacle boundaries [1], [6], [10], or far from
obstacles, on the medial axis [20]. Despite the amount of work
done on this topic (see the proceedings of the yearly IEEE
International Conference on Robotics and Automation (ICRA)
and the Workshop on Algorithmic Foundations of Robotics
(WAFR) for many contributions), a generic solution has not
yet emerged. The general observation remains, however, that
the way of sampling is crucial for the result [7], [8], [9].

Whereas previous methods are mainly obstacle-based strate-
gies, we propose a method that uses the shape of free
workspace to guide the sampling in configuration space. Infor-
mation from the workspace can only be used effectively when
the configuration space more or less resembles the workspace.
This means that narrow passages in the configuration space
should correspond to narrow passages in the workspace, and
that configurations in difficult regions can be mapped straight-
forwardly to the corresponding points in the workspace.

This holds for a large class of problems in robot motion
planning: free-flying robots in two or three dimensional scenes.
If the size of the robot is not too large compared to the size of
the scene, each difficult region in the configuration space can
be related to a relatively narrow passage in the workspace.

Our method identifies the narrow passages in the workspace
using a cell decomposition approach. Because the workspace
is only 3-dimensional, this can easily be done. Subsequently,
cells of the decomposition are grouped into regions of interest

by labeling them.
The labeling-part is the most crucial in this context. For this,

we propose a method called watershed labeling, inspired by a
technique from the field of image processing, called watershed
segmentation [19]. It is a powerful method that separates large
open regions from each other by so-called watersheds. These
watersheds are positioned inside the corridors connecting these
regions. As a result, the narrow passages are labeled differently
than the open regions. See Fig. 1 for an example.

This information is used to effectively steer the sampling
toward the most interesting regions of the scene. To this end,
each of the labeled regions is assigned a weight indicating
the chance that a sample is picked inside this region. To be
precise, for a sample we pick the position in the region and the
other degrees of freedom randomly. Narrow passage regions
will receive relatively larger weights than open regions, which
results in more samples in narrow passages. This will lead
to faster connection of loose components in the probabilistic
roadmap, and hence a quicker convergence toward a roadmap
capturing the free space.

The global outline of this paper is as follows: in Section II
we briefly recall the PRM method; in Section III we describe
our global approach. The details are filled in in Section IV.
In Section V we discuss watershed labeling and in Section VI
we will present experiments showing that the method indeed
leads to significant improvements. Finally, we discuss the
work presented and put forward some possible future work
in Section VII.

II. PRM BASICS

The motion planning problem is generally formulated in
terms of the configuration space C, the set of all possible
configurations of the robot. The dimension of the configuration
space corresponds to the number of the robot’s degrees of
freedom. Each obstacle in the workspace, in which the robot
actually moves, transforms into an obstacle in configuration
space. Together, they form the forbidden part Cforb of the
configuration space. Cfree = C \ Cforb denotes the set of all
collision-free configurations.

Probabilistic roadmap planners generally work in two
stages: a preprocessing stage, sometimes referred to as learning
stage, and a query stage. In the preprocessing stage, a roadmap
is constructed that forms a discrete representation of the
connectivity of the free configuration space. The nodes of
the roadmap are free samples, randomly chosen from the
configuration space. There is an edge between two nodes, if
a local planner finds a collision-free path between the cor-
responding configurations. The paths searched for are mostly
simple straight line segments in the configuration space.

In the query stage, the constructed roadmap is used to find
a path between a start and goal configuration. In general, these
configurations are not present in the roadmap, so they are
added to the roadmap using the local planner. Using Dijkstra
or other graph searching methods, a path between the start and
goal configuration is then easily found.

An important aspect of PRM is the way samples are picked
from the configuration space. In the basic PRM this is done
uniform randomly, but this yields many samples in open
regions of the free space and few in narrow regions, while
the inverse would be preferable. In this paper, we will focus
on a sampling strategy yielding more samples in interesting
regions.

III. GLOBAL APPROACH

The idea of our method is to use the shape of the free
workspace to guide the sampling in configuration space. For
this purpose, the preprocessing stage of PRM is subdivided
in two phases, a datastructure phase and a sampling phase. In
the datastructure phase, a robot independent datastructure is
built upon the workspace, identifying narrow and interesting
regions. This proceeds as follows:

First, the free workspace, denoted by Wfree , is decomposed
into a collection of cells. Second, cells are grouped into
regions of interest by labeling the cells according to some local
properties. The set of cells having the same label is called a
labeled region.

The subdivision of the workspace is used to steer the
sampling. So, each of the labeled regions is assigned a weight
indicating the chance that a sample in picked inside this region.
Since narrow passages should receive relatively more samples
than open regions, narrow passage regions are assigned a
relatively large weight.

Algorithmically, the datastructure phase can be depicted as
follows:

Algorithm 1 DATASTRUCTUREPHASE

1: Decompose F into cells
2: Group cells into labeled regions by assigning a label to

each of the cells
3: Assign each of the labeled regions a weight defining its

sampling probability

In Section III-B and III-C we will discuss the datastructure
phase in detail.

The sampling phase is straightforward. A sample is picked
with its translational degrees of freedom inside a labeled
region that is selected according to the weight distribution.
The other degrees of freedom are chosen uniform randomly.
This sample is then treated as in standard PRM. In Section
III-D, the sampling phase is discussed in detail.

A. Relation workspace - configuration space

We want to use the workspace geometry as a guide for
sampling in the configuration space, but the shape of the
configuration space C not only depends on the workspace,
but also on the shape and type of the robot moving through
the workspace. We concentrate on free-flying robots here, i.e.
the placement of the robot is described by its position and
orientation (see the conclusions for some remarks about other
robot types). The position of a robot is defined as the position
of its reference point in workspace. To guarantee a strong

resemblance between workspace and configuration space, we
demand that this reference point is located in the interior of the
robot. To be precise, the reference point of the robot is defined
to be the center of the robot’s largest inscribed sphere. Let rin

denote the radius of this sphere and be called the inner radius
of the robot. The outer radius rout is defined by the smallest
circumscribed sphere with the reference point of the robot as
its center.

The mapping between workspace and configuration space
is straightforward: A point p in the workspace corresponds
to the set of configurations in C which have p as their
position. This set is called C(p). The set of configurations
in C corresponding to a set of points P from the workspace
is denoted by C(P). Reversely, the point in the workspace
corresponding to a configuration c is denoted by p(c).

The correspondence of workspace narrow passages to con-
figuration space narrow passages is formalized as follows:

Theorem III.1. Let p be a point in Wfree , and let c ∈
C(p) be a configuration in Cfree . Let wcl(p) denote the
workspace clearance for p, i.e. the Euclidean distance from
p to the nearest workspace obstacle, and let cl(c) denote the
configuration space clearance of c. Then, cl(c) ≤ wcl(p)−rin .

The above theorem states that points in the workspace close
to obstacles, relate to points in the configuration space with
even less clearance. So, difficult regions in the workspace
certainly relate to difficult regions in the configuration space.
The inverse relation is less strong:

Theorem III.2. Let c be a configuration in Cfree , then
wcl(p(c)) ≤ cl(c) + rout .

This means that if the outer radius of the robot is not too
large compared to the size and scale of the workspace, every
configuration space narrow passage relates to a workspace
narrow passage as well. In this case, the shape of the free
workspace can very well be used to guide the sampling in the
configuration space.

B. Cell decomposition

In the first step of our algorithm the free workspace is
decomposed into a set of cells. Let this set of cells be denoted
by X and the union of all the cells by D, i.e.: D =

⋃
{χ ∈ X}.

Two categories of methods to decompose a space into cells
exist: exact and approximate ones. Exact cell decomposition
methods result in a set of cells whose union exactly equals
the free space of the scene, i.e. D = Wfree . Examples are
triangulations (tetrahedralizations in 3D), trapezoidal maps and
generalized Voronoi diagrams [4]. These methods extensively
use the geometry of the obstacles in the scene. Since scenes
can consist of tens of thousands of obstacles, geometric pro-
cessing is often not feasible within the tight runtime demands.
Therefore, we will focus on approximate cell decompositions.
Examples are octrees and binary space partitions [16].

Approximate cell decompositions result in subsets of the
free space, i.e. D ⊆ Wfree . Mostly, they have a recursive
nature. A coarse approximation of the free space becomes finer

at each level, by subdividing cells that partially overlap both
free and forbidden space. This may continue until a desired
level of detail is reached. This is formalized as follows:

Definition III.1. Let Bp(ε) denote the ball of radius ε

at position p. A cell decomposition is called ε-detailed if
∀Bp(ε) ⊂ Wfree : p ∈ D. Decompositions satisfying this
criterion are denoted by Dε.

We require the cell decomposition technique to be able to
produce an ε-detailed decomposition for every ε > 0.

It is easy to see that the region in configuration space
corresponding to the rin -detailed decomposition Drin

totally
contains the free configuration space:

Theorem III.3. Let rin be the inner radius of the robot, and
Drin

an rin -detailed decomposition of Wfree . Then Cfree ⊂
C(Drin

). Such cell decompositions are said to be totally
covering the free configuration space.

This observation is used later to prove the probabilistic
completeness of our method.

The cell decomposition over the workspace should in prin-
ciple be robot independent. This means that D has to be
detailed enough for every robot. This is of course not possible,
but when we choose a small enough ε, a subset of Dε can
be used for robots with an inner radius larger than ε. For
robots that have no inscribed ball (rin = 0), e.g. a point
robot or a line-segment robot, approximate cell decomposition
techniques cannot produce a totally covering decomposition.
For this kind of robots, however, a weaker statement can be
made:

Theorem III.4. Let Dε be an ε-detailed cell decomposition
of Wfree . Then, ∀c ∈ Cfree \ C(Dε) : cl(c) ≤ ε.

This fact is used later to prove a weaker form of probabilistic
completeness for our method.

C. Labeling and weights

Approximate cell decompositions usually result in a large
number of relatively small cells, especially near the boundary
of the free workspace. This is, however, not what we want; we
want a clear distinction between different regions of interest
in the scene, for instance open regions and corridors between
them. Therefore, cells should be grouped to create larger
regions. This is done by labeling each cell: cells belonging
to the same region are given the same label. The set of cells
that is given a same particular label i is called a labeled region
Ri. The union of all the labeled regions should form the total
cell decomposition. This means that all cells should be given
a label.

Each of the labeled regions should be assigned a weight
to steer the sampling, i.e. labeled regions have a chance
to receive a sample with a probability proportional to their
weights. If each labeled region would be given its volume
as its weight, the resulting sampling distribution is uniform
over the total cell decomposition. So, to give narrow regions
relatively more samples and open regions relatively less, their

weights should be raised or lowered respectively. None of the
labeled regions should be given a weight of 0; each portion of
the configuration space must have a probability > 0 to receive
a sample, in order for the method to remain probabilistically
complete, which we will prove below.

D. Sampling

The sampling scheme we propose on the datastructure cre-
ated above is simple: first, select a labeled region R according
to the weight distribution. Second, a sample is picked uniform
randomly inside C(R). This is done as follows: the labeled
region R consists of a number of cells, so a cell is picked
randomly from R, with a probability for each cell proportional
to its volume. Then, the translational degrees of freedom are
chosen inside this cell. The other degrees of freedom are
chosen randomly. Algorithmically, it looks as follows:

Algorithm 2 SAMPLINGPHASE

1: Choose randomly a labeled region R according to the
weight distribution

2: Choose randomly a cell inside R according to the cell
volumes

3: Create a new sample: pick its position inside the cell and
the other degrees of freedom uniform randomly

4: Treat this sample as in standard PRM

If the cell decomposition is totally covering the free
workspace, i.e. the robot used in the scene has a maximal
inscribed ball of radius rin and the workspace decomposition
is at least rin -detailed, we can easily show that the above
sampling scheme is probabilistically complete.

Theorem III.5. Let D be a totally covering cell decomposition
for a robot, then the sampling scheme above is probabilisti-
cally complete.

Proof Theorem III.3 states that Cfree is totally contained
within the configuration space region C(D). Since the whole
region C(D) is sampled, Cfree is totally sampled too. This
means that if the sampling continues long enough, every small
ball with radius > 0 in Cfree will contain a sample, so every
path with clearance > 0 will eventually be found. This implies
that the method is probabilistically complete [18].

For cell decompositions not totally covering the free con-
figuration space, a weaker statement can be made.

Theorem III.6. Let Dε be an ε-detailed cell decomposition
of Wfree , and assume a path with clearance > ε exists. Then,
the above sampling scheme will find a path.

Proof Theorem III.4 implies that any path with clearance
> ε in Cfree is contained in C(Dε). Since C(Dε) is totally
sampled, every small ball with radius > 0 in C(Dε) will
contain a sample if the sampling continues long enough. This
implies that the method will eventually find a path [18].

IV. FILLING IN THE DETAILS

A number of important details have yet to be filled in, such
as the used approximate cell decomposition technique and the
way the cells are labeled and assigned weights.

A. Cell decomposition

A well-known and obvious approximate cell decomposition
datastructure is the octree. An octree is a rooted tree in which
every internal node has eight children. Every node in the
tree corresponds to a cube. If a node has children, then their
corresponding cubes are the eight octants of the cube of the
parent node.

A node of the octree is subdivided when the cell contains
both obstacles and free space. If the cell only contains free
space or obstacles, then it is marked as free or full respectively,
and it is not subdivided. The subdivision of the mixed cells
may propagate down until some desired level of detail is
reached. The root of the octree corresponds to a cube or
rectangloid covering the entire workspace. The leaves of
the tree with label free together form the approximate cell-
decomposition of the workspace. Note that all cells in the
octree are congruent to the initial cell covering the total scene.

It is easily shown that the octree decomposition technique
fulfills our requirement:

Theorem IV.1. For every scene and for every ε > 0, the octree
cell decomposition technique is able to produce an ε-detailed
decomposition.

Many related decomposition techniques exist that satisfy the
above criterion as well, such as the binary space partition. For
the sake of simplicity, however, we will use the octree cell
decomposition in this paper.

B. Labeling and weights

The simplest instance of labeling cells is to give each
cell a different label. In other words, each cell is treated as
a different labeled region. The simplest weight distribution
for this labeling is to give each labeled region a weight
according to its volume. This results in uniform sampling over
the free space, and in that sense our method of using cell
decompositions can be seen as a generalization of standard
PRM.

Another obvious distribution of weights is to give each
labeled region the same weight, i.e. they all have the same
chance to be sampled. This weight distribution has a rationale,
since cells, and thus the labeled regions, tend to be smaller
when they are closer to obstacles, for instance in narrow
passages. Yet each of the cells has the same chance to
contribute a sample, leading to a larger density of samples
in narrow passages when compared to uniform sampling over
the entire configuration space.

A problem of this method is that also many small cells are
generated along the boundary of obstacles, leading to many
samples close to boundaries. It lacks a way to make a distinc-
tion between narrow passages and regions close to obstacles.
A similar problem was observed in previous attempts to deal

Fig. 2. An impression of the topographical landscape induced by the cell
decomposition of the example scene.

with the narrow passage problem [1], [6]. Yet, experiments
show that this method already works better than basic PRM
in some scenes.

To improve this, we need a way to distinguish cells in
narrow passages from cells near a boundary in an open area.
In the next section, we will describe a watershed approach to
achieve this.

V. WATERSHED LABELING

The simple labeling scheme discussed above is of course
not favorable; we want to be able to really distinguish regions
of interest in the scene. For such a labeling method, we let us
inspire by image segmentation methods from the field of image
processing. In image segmentation, the problem is roughly
the same. Labeled regions should be formed of pixels that
somehow belong together, according to a property defined in
terms of the image itself.

The watershed transform [19] is a well-known segmentation
method. It has shown to be a powerful method in many ap-
plications. Watershed segmentation yields nice and convincing
labeled regions. It separates open regions from each other by
watersheds.

The watershed transform may very well be used as a basis
for our labeling scheme, where the watershed regions represent
narrow passages and the regions they separate represent the
open regions in the scene.

A. Watersheds in topographical landscapes

The watershed method was originally developed for discrete
binary images (2D or 3D). So, we need to adapt the algorithm
to make it suitable for approximate cell decompositions. We
concentrate on octrees here, but we believe that it is extendible
to other cell decompositions as well. We use an analogon with
a topographical landscape to explain the algorithm for 2D cell
decompositions. The algorithm is easily extended to higher
dimensions.

We interpret the sizes of the cells in the decomposition as
elevations in a topographical landscape. Large cells correspond
to low elevations (see Fig. 2 for an impression). In the
landscape we may distinguish different catchment basins.
These are areas in the landscape associated with a local
minimum, such that every imaginary rain drop falling in

the catchment basin would end up in the particular local
minimum. The boundaries between the catchment basins are
called watersheds.

To find the watershed regions, the landscape is flooded.
Starting from the minima of lowest elevation (the largest
free cells), the water will progressively fill up the different
catchment basins. Now, at each cell where the water coming
from two different minima would merge, we build a water-
shed. At the end of this flooding procedure, each minimum
is completely surrounded by watersheds, which delimit its
associated catchment basin. The catchment basins now each
form an open labeled region and the watersheds separating the
catchment basins identify the narrow passages between open
labeled regions.

B. Watersheds for cell decompositions

In terms of an octree cell decomposition, each of the
hierarchy levels in the octree correspond to a flood level in the
topographical landscape, and rising the flood level corresponds
to processing the cells in the next hierarchy level of the octree.
Local minima correspond to isolated groups of cells of locally
maximal sizes. These are given a unique label. The algorithm
iteratively processes each of the hierarchy levels in the octree.
We start with the highest hierarchy level, which contains the
largest cells.

Processing a hierarchy level goes as follows: for each of
the cells in the level, it is checked if it has an already labeled
(larger) neighboring cell. If this is the case, the cell is appended
to a first-in-first-out queue (see Algorithm 3, lines 2...4).
Subsequently, each cell in the queue is processed. Again, its
neighbors are inspected: if the neighbor cells that are already
labeled all have the same label, the cell is given that label too.
If there are neighbors with different labels, the cell is labeled
as a watershed cell. Neighboring cells of the same hierarchy
level that neither are already in the queue, nor are already
labeled, are appended to the queue (see Algorithm 3, lines
6...15).

This process repeats until the queue is empty. Then, there
may still be a number of cells in the current hierarchy level
that have no label yet. These cells form new local minima and
are given new labels. Groups of adjacent unlabeled cells are
given the same label (see Algorithm 3, lines 17...26). They
form together a local minimum.

After this, the algorithm proceeds to the next hierarchy level,
carrying out the same process. This may continue until some
desired level of detail is reached. Note that the watershed
algorithm can be carried out simultaneously with a breadth-
first construction of the cell decomposition.

The algorithm is given in pseudocode in Algorithm 3. A
first-in-first-out queue is used in the algorithm. Three functions
are defined on this queue:

• fifo add(χ): Adds cell χ to the queue
• fifo first(): Returns the cell at the front of the queue and

removes it from the queue
• fifo empty(): Returns true if the queue is empty and false

otherwise

Furthermore, a function N(χ) is used. It returns a set
containing all free neighboring cells of χ in the octree. Note
that the function is only used for cells whose neighbors are
either larger or have the same size, so this function is easily
implemented.

Algorithm 3 WATERSHEDLABELING

1: for all hierarchy levels of the cell decomposition do
2: for all cells χ in the current hierarchy level do
3: if there exist χ′ ∈ N(χ) that is already labeled then
4: fifo add(χ)
5:
6: while not fifo empty() do
7: χ← fifo first()
8: for all cells χ′ ∈ N(χ) do
9: if χ′ is already labeled then

10: if χ is unlabeled then
11: Give χ the same label as χ′

12: else if χ has another label than χ′ then
13: Label χ as a watershed
14: else if χ′ is unlabeled and not in the queue then
15: fifo add(χ′)
16:
17: for all cells χ in the current hierarchy level do
18: if χ is unlabeled then
19: Give χ a new label
20: fifo add(χ)
21: while not fifo empty() do
22: χ′ ← fifo first()
23: for all cells χ′′ ∈ N(χ′) do
24: if χ′′ is unlabeled then
25: Give χ′′ the same label as χ

26: fifo add(χ′′)

The watershed algorithm has a running time linear in the
number of cells. Since no geometric operations have to be
performed, such as collision checks, it is a purely combi-
natorial algorithm and therefore very fast. Building the cell
decomposition of the workspace dominates the running time
of the preprocessing phase.

With this technique, the narrow passages can be identified
precisely (see Fig. 3a). Each of the regions associated with
a local minimum gets a unique label. These regions form
the open labeled regions. The watershed regions can be
distinguished from each other when the labels of the regions
they separate are maintained in the algorithm.

C. Assigning weights

Assigning weights to the labeled regions can be done
in many ways. We restrict ourselves to a simple weighting
approach in this paper: each labeled region is given the same
weight. Experiments showed that this works quite well for
most scenes. In Fig. 3b an impression is given of how the
samples are distributed using this method. More complicated
weighting schemes are the subject of further research.

Fig. 3. (a) Labeled regions in the example scene. The grey squares form
watershed regions. (b) Distribution of samples in the example scene when
each labeled region is given the same weight. The sample density in open
region 5 is clearly higher than the sample density in open region 2.

Fig. 4. The scenes used in the experiments. (a) Rooms. (b) Clutter. (c) Hole.
(d) Office.

VI. EXPERIMENTAL RESULTS

We experimented with our method on four different scenes:
rooms, clutter, hole and office (see Fig. 4).

rooms in this scene there are three rooms with two narrow
doors between them. The table must move through the doors
to the other room. The watershed labeling yields three open
regions in each of the rooms and two watershed regions in the
doors between them.

clutter the clutter scene consists of 500 uniformly dis-
tributed tetrahedra. The configuration space will consist almost
solely of narrow passages, so for this scene uniform random
sampling is expected to work best. We test it with an L-shaped
robot that has to travel from one corner to the opposite. The
watershed labeling yields a disorganized distribution of ‘open’
and watershed regions between the tetrahedra. In total, there
are 296 different labeled regions.

hole this scene clearly has a narrow passage which is
relatively hard for any kind of robot. A method to steer the
sampling toward narrow passages should work very well in
this case. We use a complicated robot having four legs. The
watershed labeling yields two open regions on each side of
the wall and a watershed region inside the hole.

office this scene has a large hall with two offices similar to
the rooms scene in each of the corners. The robot (a sphere)
has to move from one to the other office. We expect that denser
sampling of smaller open regions can be of particular interest
in this scene. The watershed labeling yields eight open regions.
Three smaller ones in each of the offices and two large ones
in the central hall.

A. Experimental setup

Our method was integrated in the motion planning system
SAMPLE (System for Advanced Motion PLanning Experi-
ments), implemented in Visual C++ under Windows XP. The
experiments were run on a 2.4 GHz Pentium 4 processor with
1 GB internal memory. As basic collision checking package
we use Solid [5].

In the experiments we consider the time needed to construct
a covering roadmap for the scene. A roadmap is considered
good enough when a pair of predefined query configurations
is connected via the roadmap. For each scene such a query
pair is devised (see Fig. 4). Because randomness is involved,
we averaged the running times of 100 independent runs. Only
for the hole scene, we performed 50 runs.

Since our method uses a preprocessing step to build a
datastructure guiding the sampling, the actual running time
is not directly comparable to traditional methods, where such
a datastructure step is not present. Since our datastructure is
robot independent, i.e.: for different types of robots a roadmap
can be constructed using the same datastructure, the time
needed to construct the datastructure is not added to the time
needed to build the roadmap, but reported separately. For the
rooms, clutter, hole and office scene it took respectively 0.55,
3.9, 0.06 and 2.0 seconds to build a watershed labeled cell
decomposition with an appropriate level of detail. We believe
that these times can be improved, but we did not concentrate
on that.

We compare our method to previously proposed techniques
that aim to better capture narrow passages in the sampling.
In a recent publication [9], various sampling methods were
compared to each other, among other things with the focus
on narrow passages. Two conclusions can be drawn from
that work: uniform random sampling performs quite well in
many cases, and an obstacle-based variant in which only near-
obstacle configurations are sampled, called nearest contact,
appears to work well for narrow passage problems.

So, in our experiments we compare our method to these two
sampling strategies. Fig. 5 summarizes our results.

B. Results

The results show that our method works particularly well
for the rooms scene. This is because the watershed regions

Rooms (100 runs)

0

0.25

0.5

0.75

1

1.25

1.5

OW UR NC

Clutter (100 runs)

0

0.5

1

1.5

2

2.5

3

OW UR NC

Hole (50 runs)

0

2

4

6

8

10

OW NC OW (BB) NC (BB)

Office (100 runs)

0

2

4

6

8

OW UR NC

Fig. 5. Running times in seconds for each of the experiments. OW is the
octree-watershed method. UR is uniform random and NC is nearest contact.
The boxes show the area between the 1st and 3rd quartile. The square shows
the average value. For the hole scene, we report times for the scene without
(left) and with (right) bounding box (BB). The results of the uniform random
approach are not shown here, because they do not fit in the scale of the graph;
the average running time is over 400 seconds.

capture the narrow passages very well and enable an effective
steering of the sampling. This results in considerably better
performance of our method than uniform random and nearest
contact.

For the clutter scene, uniform random works best, as was
expected. Our method performs less well on this scene,
although the performance is not worse than that of the nearest
contact method.

For the hole scene our method performs comparable to
nearest contact. The uniform random approach completely
fails here. The nearest contact method performs relatively
well for this scene, due to the complexity of the robot.
The method has a clear disadvantage though: it generates
samples close to the boundary of obstacles, but it cannot
differentiate between narrow passages and open regions. This
is made clear when a solid bounding box is created around the
scene. The performance of our method is not affected by this
change, whereas the performance of nearest contact degrades
drastically (see Fig. 5c).

For the office scene our method again works best. Nearest
contact fails here, because the obstacle boundaries in open
regions are very large compared to narrow passage boundaries,
and many useless samples are created there. For both the
uniform random and the nearest contact method, the average
running time does not lie within the first and third quartile.
This implies that some runs takes a huge amount of time.
For our method, this does not happen. The good and stable

performance of our method in this scene is not only explained
by the accurate labeling of narrow passages, but also because
smaller open regions receive relatively more samples than
large open regions. In the three rooms in each of the two
offices, which may be regarded as the difficult regions of the
scene, the sample density is much higher than in the large
regions in the hall, where not so many samples are necessary.
This results in a significant speedup of the construction of the
roadmap.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we presented a novel approach toward sam-
pling in difficult regions. We used information from the
workspace, extracted by an approximate cell decomposition, to
guide the sampling. We showed that this approach has a great
potential, especially in combination with watershed labeling.
Watershed labeling has proven to be a powerful technique
to identify narrow passages. We have used this successfully
to speed up the construction of roadmaps in difficult scenes.
Although we showed some promising results, we believe that
a number of issues remain to be studied further.

A basic issue is the choice of the parameters and variables
of PRM and our own method. In this paper, we used standard
settings, but we think that fine-tuning these parameters will
further improve our results.

Another improvement might be made when entire narrow
passages are labeled. In our current implementation, the water-
sheds are only one cell thick, while the narrow corridors may
be much longer. It can also be useful to label the ‘mouths’
of the narrow passages. These often correspond with difficult
regions in configuration space (e.g. for the hole scene).

More improvements can be made when the structure of the
cell decomposition and the watersheds is taken into account.
It might for instance be used to adapt various parameters of
PRM during construction of the roadmap, or as a datastructure
for efficient neighbor searching.

Finally, we would like to make some remarks about various
robot types. In this paper, we focused on free-flying robots.
We believe, however, that the presented approach may be
useful for other types of robots as well. For example, for
an articulated robot with six links, the configuration space
of the first three links resembles the configuration space
of the entire robot, so our method may be applied in this
space. In general: information from the configuration space
of the dominating degrees of freedom (for free-flying robots,
these are the translational dof’s) may be used for guiding the
sampling in the overall configuration space, but this remains
to be studied further.

ACKNOWLEDGMENT

The authors would like to thank Dennis Nieuwenhuisen for
developing the Callisto collision and visualization toolkit and

Roland Geraerts for writing the SAMPLE software.
This research was supported by the IST Programme of the

EU as a Shared-cost RTD (FET Open) Project under Contract
No IST-2001-39250 (MOVIE - Motion Planning in Virtual
Environments).

REFERENCES

[1] N. Amato, O. Bayazit, L. Dale, C. Jones, D. Vallejo; OBPRM: An
obstacle-based PRM for 3D workspaces, in: P. K. Agarwal, L. E. Kavraki,
M. T. Mason (eds.), Robotics: The algorithmic perspective, A. K. Peters,
Natick, 1998, pp. 155-168.

[2] N. Amato, Y. Wu; A randomized roadmap method for path and manipu-
lation planning, Proc. IEEE Int. Conf. on Robotics and Automation, 1996,
pp. 113-120.

[3] J. Barraquand, L. Kavraki, J.-C. Latombe, T.-Y. Li, R. Motwani, P.
Raghavan; A random sampling scheme for path planning, Int. Journal
of Robotics Research 16, 1997, pp. 759-774.

[4] M. de Berg, M. van Krefeld, M. Overmars, O. Schwarzkopf; Computa-
tional Geometry, Algorithms and Applications, Springer Verlag, Berlin,
2000.

[5] G. van den Bergen; Collision detection in interactive 3D computer
animation, PhD thesis, Eindhoven University, 1999.

[6] V. Boor, M. H. Overmars, A. F. van der Stappen; The Gaussian sampling
strategy for probabilistic roadmap planners, Proc. IEEE Int. Conf. on
Robotics and Automation, 1999, pp. 1018-1023.

[7] M. Branicky, S. LaValle, K. Olson, L. Yang; Quasi-randomized path
planning, Proc. IEEE Int. Conf. on Robotics and Automation, 2001, pp.
1481-1487.

[8] R. Geraerts, M. H. Overmars; A comparative study of probabilistic
roadmap planners, Proc. Workshop on the Algorithmic Foundations of
Robotics, 2002, pp. 40-54.

[9] R. Geraerts, M. H. Overmars; Sampling Techniques for Probabilistic
Roadmap Planners, 2003, unpublished.

[10] D. Hsu, T. Jiang, J. Reif, Z. Sun; The Bridge Test for Sampling
Narrow passages with Probabilistic Roadmap Planners, IEEE Int. Conf.
on Robotics and Automation, 2003.

[11] D. Hsu, L. Kavraki, J.-C. Latombe, R. Motwani, S. Sorkin; On finding
narrow passages with probabilistic roadmap planners, in: P. K. Agarwal,
L. E. Kavraki, M. T. Mason (eds.), Robotics: The algorithmic perspective,
A. K. Peters, Natick, 1998, pp. 141-154.

[12] L. Kavraki; Random networks in configuration space for fast path
planning, PhD thesis, Stanford University, 1995.

[13] L. Kavraki, J.-C. Latombe; Probabilistic Roadmaps for Robot Path
Planning, in: K. Gupta and A. del Pobil (eds.), Practical Motion Planning
in Robotics: Current Approaches and Future Directions, John Wiley, pp.
3353, 1998.

[14] L. Kavraki, J.-C. Latombe; Randomized preprocessing of configuration
space for fast path planning, Proc. IEEE Int. Conf. on Robotics and
Automation, 1994, pp. 2138-2145.

[15] L. Kavraki, P. Švestka, J.-C. Latombe, M. H. Overmars; Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,
IEEE Trans. on Robotics and Automation 12, 1996, pp. 566-580.

[16] J.-C. Latombe; Robot motion planning, Kluwer Academic Publishers,
Boston, 1991.

[17] M. H. Overmars; A random approach to motion planning, Technical
report RUU-CS-92-32, Dept. Compt. Sci., Utrecht Univ., Utrecht, the
Netherlands, October 1992.

[18] P. Švestka; Robot motion planning using probabilistic roadmaps, PhD
thesis, Utrecht Univ., 1997.

[19] L. Vincent, P. Soille; Watersheds in Digital Spaces: An Efficient Algo-
rithm Based on Immersion Simulations, IEEE Trans. on Pattern Analysis
and Machine Intelligence, Vol 13, No. 6, June 1991.

[20] S. A. Wilmarth, N. M. Amato, P. F. Stiller; MAPRM: A probabilistic
roadmap planner with sampling on the medial axis of the free space, Proc.
IEEE Int. Conf. on Robotics and Automation, 1999, pp. 1024-1031.

	header: Proceedings of the 2004 IEEE International Conference on Robotics & Automation New Orleans, LA • April 2004
	footer: 0-7803-8232-3/04/$17.00 ©2004 IEEE
	01: 453
	02: 454
	03: 455
	04: 456
	05: 457
	06: 458
	07: 459
	08: 460

